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Nomenclature

c = nonlinear program constraint vector

D = thruster duty cycle

hbody = radius of a flyby body

hsafe = minimum safe flyby altitude

M = maneuver transition matrix

m = spacecraft mass

N = number of phase segments

Np = number of trajectory phases

P = power available to the solar electric propulsion unit

r = spacecraft position vector w.r.t. central body

rflyby = flyby radius (planetary radius + safe flyby altitude)

T = thrust

t = current epoch

u = control vector

v = spacecraft velocity vector w.r.t. central body

x = nonlinear program decision variable vector

X = spacecraft state vector

∆t = propagation time of a trajectory segment

∆tflight = mission time-of-flight

∆tp = phase time-of-flight

Θ = time variable connection matrix

µ = standard gravitational parameter

Ξ = decision variable connection matrix

Φ = state transition matrix

˙(·) = first time derivative

(̈·) = second time derivative

‖ · ‖ = L2 (Euclidean) norm

(·)† = phase match point

(·)− = quantity immediately prior to an event

(·)+ = quantity immediately after an event
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(·)k = impulsive maneuver index

(·)F = forward propagated half-phase

(·)B = backward propagated half-phase

(·)0 = phase starting epoch

(·)f = phase ending epoch

(·)max = maximum value

(·)min = minimum value

(·)� = solar quantity measured in the frame of the central body

I. Introduction

The complexity of most spacecraft trajectory design problems necessitates beginning the initial exploration of the

design space with lower fidelity models than would be used to create a flight-ready reference solution. Bounded-

impulse models are commonly incorporated into preliminary design efforts for both chemical high-thrust [1–7] as

well as continuous-thrust propulsion system configurations [8–12]. A variety of optimization techniques have been

applied to solve impulsive trajectory optimization problems, however most can be categorized as indirect, direct or

hybrid methods. Indirect methods [13–19] use necessary conditions derived using the calculus of variations [20, 21],

direct methods [22–27] cast the trajectory optimization problem as a parameter optimization problem and directly

extremalize a cost function, and hybrid approaches [28–31] rely on Bellman’s Principle of Optimality of a dynamic

program. While each method has advantages and disadvantages, direct methods are popular as they are typically

quite robust, easily accomadate various problems and constraints, and benefit from the availability of several existing

optimization packages such as SNOPT [32], IPOPT [33], and WORHP [34] that may be used to solve the underlying

parameter optimization problem, which usually is a nonlinear program.

The necessary conditions for optimality of a nonlinear program [35, 36] require the computation of the Jacobian

matrix, that is the matrix of partial derivatives of each of the nonlinear constraints and the objective function with

respect to each of the problem decision variables. It is possible to approximate this matrix using the method of finite

differences. While implementation of this technique is straighforward, it is computationally expensive and suffers

from the competing goals of reducing Taylor series truncation error and floating point roundoff error, which inherently

limits the accuracy of this method. Other methods such as automatic differentiation and complex step differentiation

offer a means for computing near-machine precision derivatives, however, their implementation can be nontrivial

and can also result in a substantial increase in execution time. Lantoine et al. [37] showed that computing state

transition matrices (STMs) using multicomplex numbers can result in only marginal computation time increases over

calculating the matrices analytically, however this does not preclude having to develop a method for computing the

actual constraint partials, towards the calculation of which the STMs play a significant role. When an overloading

3 of 34

American Institute of Aeronautics and Astronautics



technique is integrated into the more general case of the evaluation of the trajectory cost function, it has been shown

that derivative computations still rely on additional computational infrastructure such as parallelization of the gradient

calculations in order to achieve the necessary runtimes needed to support a preliminary design effort [38].

The increasing sophistication of space missions is driving a similar evolution in preliminary design techniques.

Modern hybrid optimal control (HOC) architectures typically require the evaluation of thousands of instances of an

NLP cost function and require that the cost function evaluation be accurate, rapid and robust. This is especially true

of multi-objective HOC solvers that seek to generate Pareto surfaces [39–41]. The accurate and efficient computation

of constraint gradients has been shown to be of critical importance to a preliminary design optimization framework

[42, 43]. With this as motivation, the techniques for computing the Jacobian matrix for the multiple gravity assist

low-thrust (MGALT) and multiple gravity assist with n deep space maneuvers using shooting (MGAnDSMs) [44]

transcriptions will be discussed. A companion paper will solve several relevant problems that show the utility of

employing analytic derivatives, i.e. compared to using derivatives computed using finite differences [45].

II. Forward-Backward Shooting Methods

II. A. General Description

The general spacecraft trajectory optimization problem is a multi-phase optimal control problem and a mission tra-

jectory may be organized into Np phases. The boundaries of a Forward Backward Shooting (FBS) phase are called

control points and can be massive bodies (flyby targets) such as planets, their satellites, asteroids, etc., or even a free

point in space. The optimizer encodes the mass and the relative velocity vector of the spacecraft with respect to the

control points (v∞) at either side of the phase as decision variables. These decision parameters are combined with

ephemeris data to form the complete spacecraft state at either side of a phase, which is then propagated forwards and

backwards from the control points at the phase boundaries. This two-sided shooting, in general results in a disconti-

nuity of the spacecraft’s state vector (X) at some location along the phase, which is closed to within some tolerance

by the numerical optimizer as shown in Figure 1.

II. B. Constraints and Decision Variables

The hallmark constraint of an FBS phase is the match point continuity constraint. In order to enforce continuity of the

state vector across the match point, a vector of “defect” constraints is applied, and designated by a dagger (†):

c† = X†B −X†F =


rB − rF

vB − vF

mB −mF

 = 0 (1)

As previously mentioned, the optimizer is free to select the spacecraft’s velocity vector components relative to the

two control points defining a particular phase. If the current phase ends with a flyby of a massive body, two nonlinear
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Match point Control point (planet, satellite, free point in space)

Forward propagation

Backward propagation

Mission clock time flow

†

F
X †

B
X

Figure 1. A single FBS phase.

constraints are applied to ensure that the maneuver is feasible, with the flyby itself being modeled as a discontinuity

in the spacecraft’s velocity vector. The first constraint forces the magnitudes of the incoming and outgoing velocity

asymptotes to be equal:

cv∞ = v+
∞ − v−∞ = 0 (2)

The second constraint prevents the altitude of the spacecraft from dropping below a minimum safe altitude hsafe, and

also ensures that the turn angle of the flyby is physically realizable. We have chosen a safety altitude of 2% of the

body’s radius hbody.

cflyby-altitude = rperiapse − (hbody + hsafe) ≥ 0 (3)

=
µplanet

v2
∞

[
1

sin(δ/2)
− 1

]
− (hbody + hsafe) ≥ 0

where δ is defined in Eq. (4).

δ = acos
(

v−∞ · v+
∞

v−∞ v+
∞

)
(4)

Gradients for Equations (2) and (3) are provided in the Appendix (C).

The last constraint applied to an FBS phase requires that the sum of the individual phase flight times (∆tp) fall

within the upper and lower bounds (∆tmin and ∆tmax) placed on the total mission time-of-flight (TOF) ∆tflight:

cTOF = ∆tmin ≤ ∆tflight =

Np∑
i=1

∆tpi ≤ ∆tmax (5)
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A list of typical decision variables that characterize an FBS mission are described in Table 1.

Table 1. Typical decision variables for an FBS mission.

xi Description Number

t0 Launch epoch 1

v∞ Launch impulse magnitude 1

RA Right ascension of launch asymptote 1

DEC Declination of launch asymptote 1

∆tp Phase time of flight Np

mf Phase final mass Np

v∞0 Phase initial excess velocity vector 3(Np − 1)

v∞f
Phase final excess velocity vector 3Np

a

aFor a rendezvous this becomes 3(Np − 1)

With the concept of an FBS phase established, it is now possible to specialize the concept to two impulsive trajec-

tory models, the multiple gravity assist low-thrust (MGALT) and multiple gravity assist with n deep space maneuvers

using shooting (MGAnDSMs) transcriptions.

II. C. Multiple Gravity-Assist Low-Thrust Model

The medium-fidelity continuous-thrust trajectory model used in this work is the multiple gravity assist with low-thrust

(MGALT) transcription. This is a simplified model that combines the well-known Sims-Flanagan transcription [8] with

a two-body patched-conic flyby model [46]. Each phase of a Sims-Flanagan trajectory is itself a multi-stage optimal

control problem, and is discretized into N equal-sized time segments. The continuous-thrust that may be applied over

the course of each segment is approximated by a bounded-impulse at the center of each of these segments. Since

applied thrust is approximated as a discontinuous ∆v vector, it is possible to propagate the spacecraft’s position and

velocity components using Kepler’s equation between applied impulses. Furthermore, due to this discontinuity, the

following notation is adopted to distinguish between the spacecraft’s velocity just prior to, and immediately following,

the applied impulse, i.e.

v+
k = v−k + ∆vmaxkuk (6)

for forward propagation, and

v−k = v+
k −∆vmaxkuk (7)

for backward propagation. Figure 2 depicts a single phase and shows the match point discontinuity. Note that in the

backwards propagation half-phase, the− and + superscripts on the pre and post-impulse spacecraft velocities preserve
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the manner by which a trajectory would be physically flown and not the way it is numerically propagated in the solver.

Match point

Bounded impulse 

Control point (planet, satellite, free point in space)

Segment boundary

Forward propagation

Backward propagationMission clock time flow

Keplerian propagation
 10 mm

1 Nf mm



1v


1v



2v


2v

2m
3m 2/Nm



2/Nv


2/Nv

Nm



Nv


Nv

Figure 2. A single MGALT phase. The velocity symbols v−
k and v+

k are present to indicate the velocity of the spacecraft immediately

prior to and immediately after the kth impulsive maneuver.

The 3x1 vector uk contains the control parameters associated with the kth maneuver. The scalar quantity ∆vmaxk ,

∆vmaxk =
NactiveD Tmaxk (tf − t0)

mkN
(8)

represents the maximum ∆v achievable by the spacecraft by applying the kth maneuver. In Equation (8), Nactive is

the number of active thrusters, D is the thruster duty cycle, Tmaxk is the maximum available thrust for the current

maneuver, t0 and tf are the beginning and ending epochs of the current phase and mk is the mass of the spacecraft at

the center of the segment, just prior to the applied impulse. The spacecraft’s mass across the kth bounded impulse is

computed using the following equation:

mk =


mk−1 − ‖uk−1‖ ∆mmaxk−1

forward propagation

mk+1 + ‖uk‖ ∆mmaxk backward propagation
(9)

where mmaxk = D ∆t ṁmaxk and ∆t =
(tf−t0)
N . Note that the impulsive thrust approximation implies m+

k−1 = m−k

and for notational convenience, we set m−k = mk.

The maximum available thrust Tmax and the maximum mass flow rate ṁmax are computed using a propulsion
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system power model [45, 47]. These quantities are typically functions of their input power P , which is in turn a

function of the spacecraft’s distance from the sun rs/� for the case of a solar electric power system. In advanced

power system models that model hardware degredation, the power available may also be dependent on the time since

launch, and will therefore have a direct dependency on the current epoch t i.e.

Tmaxk(Pk(rs/�, t)); ṁmaxk(Pk(t, rs/�, t)) (10)

II. C. 1. MGALT-Specific Decision Variables and Constraints

An MGALT phase is a specific variety of the general FBS phase. As such, it inherits the constraints and decision

variables as described in section II. B. As previously mentioned, the MGALT phase is divided into N equal time

segments. The impulse that is applied at the center of each of these steps is comprised of three decision variables that

determine the throttle vector uk, whose norm is bounded by one, i.e.

uk =

[
uxk uyk uzk

]T
; ‖uk‖ ≤ 1 (11)

represents the “up-to-unit vector control” stage constraint. Additionally, if a variable specific-impulse (VSI) configu-

ration is being approximated, the propulsion unit’s specific impulse can be selected for each segment or for the mission

as a whole. The decision variables of an MGALT phase (in addition to those in Table 1) are described in Table 2.

Table 2. Additional decision variables for an MGALT phase.

xi Description Number

uk control vector 3N

Ispk specific impulse N a

aIsp may also be set for the mission as a whole, in which case only
one decision variable is required.

II. D. Multiple Gravity-Assist with n Deep Space Maneuvers Model

The multiple gravity assists (MGA) with n deep space maneuvers per phase, using a shooting technique (DSMs), is an

FBS phase that models the trajectory of a spacecraft using a chemical engine [44]. A typical single MGAnDSMs phase

is depicted in Figure 3. This phase type allows for the number of mid-course maneuvers to be selected a priori or by

an outer-loop optimizer. The maneuvers are separated in time by a ∆tk optimization variable that determines their

location in the phase. Note that maneuvers at the phase end points are also possible. Alternatively, the phase endpoint

may be a gravity-assist body. If fewer than n maneuvers are optimal for the transfer, the formulation is structured such

that one or more of the potential maneuvers will have a magnitude of zero.

Unlike MGALT, the applied ∆v at each maneuver is encoded directly as a decision variable:
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Forward propagation

Backward propagation

Mission clock time flow

Match point

Deep space maneuver

Control point (planet, satellite, free point in space)

0m

nf mm 



1v


1v

2m



nv


nv

Figure 3. A single MGAnDSMs phase.

v+
k = v−k + ∆vk (12)

Furthermore, mass is propagated using the Tsiolkovsky rocket equation:

mk+1 = mke
−∆vk/ve (13)

where ve is the rocket’s exhaust velocity measured relative to the vehicle.

II. D. 1. MGAnDSMs-Specific Decision Variables and Constraints

As with MGALT, the specialization of an FBS phase to an MGAnDSMs phase introduces several additional optimiza-

tion parameters and constraints. As summarized in Table 3, for this phase type, the mid-course maneuver vectors (if

any), and the relative time variables ∆tk that separate them must be selected by the NLP solver.
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Table 3. Additional decision variables for an MGAnDSMs phase.

xi Description Number

∆t1 time to first maneuver 1

∆t2, ...,∆tn inter-maneuver times n− 2

∆tn+1 time from last maneuver to phase end 1

∆v1, ...,∆vn DSM vectors 3n

The inter-maneuver times ∆tk are constrained such that their sum does not exceed the phase flight time:

n+1∑
k=1

∆tk −∆tp = 0 (14)

In practice, the true decision variable selected by the NLP solver, is αk ∈ [0, 1], with ∆tk = αk∆tp. Then, the

elements in the set {αi} are constrained such that their sum does not exceed one.

III. Match Point Partial Derivatives Computation

III. A. Derivative Propagation

A large majority of the dense entries of the Jacobian matrix for the MGALT and MGAnDSMs transcriptions are

comprised of partial derivatives of the phase match points. This is due to the fact that partials of the match point

constraint vector c† are dense with respect to nearly all entries in the decision vector x. These derivatives are also the

most complicated Jacobian entries to calculate. At the most general level, their computation can be summarized by

the following expression:

∂c†

∂x
=
∂X†B
∂x
− X†F
∂x

(15)

Calculating the matrix Eq. (15) requires transmitting sensitivity information from various intermediate points along a

phase onwards to the match point. State transition matrices (STMs) can be used to map derivatives across Keplerian

arcs. The bounded impulse approximation introduces a velocity discontinuity at the location of each maneuver (i.e.

r(t) ∈ C0 and v(t) ∈ C−1). For this reason, in addition to the STMs, a method is also required for mapping derivative

information across these discontinuities. This mapping can also be expressed as a matrix and is hereafter referred to

as the maneuver transition matrix (MTM). The alternating STM/MTM derivative mapping technique is illustrated in

Figure 4. It is useful, to associate the maneuver index k with the STMs and MTMs in order to keep track of the large

number of calculations required to compute the match point partials.
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1Φ k kΦ
1Φ k

1kM
kM

1km km
1km1 kv kv



1kX 

1kX 

kX 

kX

Figure 4. Derivative mapping matrices.

III. A. 1. Two-Body State Transition Matrix

The two-body perturbation state transition matrix contains the first-order sensitivities of the spacecraft’s position and

velocity vectors at arbitrary time tk with respect to variations in the position/velocity vector at a previous time tk−1.

Φ(tk, tk−1) =

R̃(t) R(t)

Ṽ(t) V(t)

 =

 ∂rk
∂rk−1

∂rk
∂vk−1

∂vk
∂rk−1

∂vk
∂vk−1

 (16)

Notational differences abound for the 3x3 quadrants of the perturbation STM [48–53], therefore we included those

due to Battin in the Appendix (Equations (97) - (100)).

III. A. 2. Augmented State Transition Matrix

In order to account for first order sensitivities of mass, time-of-flight and specific impulse variables across the kth

trajectory segment, the STM is augmented with additional rows and columns:
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Φk =
∂X−k
∂X+

k−1

=



R̃k(t) Rk(t)
∂r−k
∂∆tp

Ṽk(t) Vk(t)
06×1

∂v−k
∂∆tp

06×2

04×6 I4×4



=



∂r−k
∂r+k−1

∂r−k
∂v+

k−1

∂r−k
∂∆tp

∂v−k
∂r+k−1

∂v−k
∂v+

k−1

06×1
∂v−k
∂∆tp

06×2

04×6 I4×4


(17)

Proceeding from the left, the first additional row/column in Eq. (17) is for the spacecraft’s mass, then current phase

time-of-flight, previous phase flight times, and finally Isp. This augmented state transition matrix may be used for both

the MGALT and MGAnDSMs transcriptions as both transcriptions use Keplerian two-body propagation methods. For

the high-thrust model, the last rows and columns, corresponding to Isp decision variables, are omitted.

III. A. 3. MGALT Maneuver Transition Matrix

Unlike the STM, the MTM is transcription dependent due to the presence of thruster hardware modeling for MGALT

and because mass is propagated differently for the two trajectory models. The MGALT MTM is calculated as follows:
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Mk =
∂X+

k

∂X−k

=



∂r+k
∂r−k

∂r+k
∂v−k

∂r+k
∂mk

03×1 03×1 03×1

∂v+
k

∂r−k

∂v+
k

∂v−k

∂v+
k

∂mk
Mk24 03×1 Mk26

∂mk+1

∂r−k
01×3 1 Mk34 0 Mk36

03×7 I3×3



=



I3×3 03×3 03×1 03×1 03×1 03×1

∂v+
k

∂r−k
I3×3

∂v+
k

∂mk
Mk24 03×1 Mk26

∂mk+1

∂r−k
01×3 1 Mk34 0 Mk36

03×7 I3×3


(18)

For forward propagated half-phases:

∂v+
k

∂r−k
=
∂∆vmaxk

∂r−k
= uk

D∆t

mk
· ∂Tmaxk

∂Pk
· ∂Pk
∂rs/�k

·
∂rs/�k
∂rk

(19)

Note here that the last term in Eq. (19) implies that these calculations are valid for any central body, i.e.,

rs/� = r− r� (20)

and

∂rs/�k
∂rk

=

[
∂rs/�

∂xk

∂rs/�

∂yk

∂rs/�

∂zk

]
(21)

This sub-matrix is similarly calculated for backwards propagated half-phases, with the addition of an extra term that

accounts for the fact that in Eq. (9), mk has a direct dependence on ṁmaxk (and also noting that r+
k = r−k = rk):

∂v−k
∂r+

k

= uk
D∆t

mk
· ∂Pk
∂rs/�k

·
∂rs/�k
∂rk

·
[
∂Tmaxk

∂Pk

− ‖uk‖
D∆tTmaxk

mk
· ∂ṁk

∂Pk

]
(22)
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From Eq. (6) and (7), it follows that:

∂v+
k

∂mk
=
∂∆vmaxk

∂mk
= −uk

D∆tTmaxk

m2
k

= −uk
∆vmaxk

mk
(23)

∂v−k
∂mk+1

=
∂∆vmaxk

∂mk
= uk

D∆tTmaxk

m2
k

= uk
∆vmaxk

mk
(24)

The sensitivity of the post/pre-burn mass to changes in the spacecraft’s current position is calculated as follows:

∂mk+1

∂r−k
= −‖uk‖D∆t

∂ṁk

∂Pk
· ∂Pk
∂rs/�k

·
∂rs/�k
∂rk

(25)

∂mk

∂r+
k

= ‖uk‖D∆t
∂ṁk

∂Pk
· ∂Pk
∂rs/�k

·
∂rs/�k
∂rk

(26)

The submatrices Mk24 and Mk34 will be discussed in section III. D and Mk26 and Mk36 in section III. C.

III. A. 4. MGAnDSMs Maneuver Transition Matrix

The MTM changes slightly for the high-thrust case as previously mentioned since mass is propagated using the rocket

equation, and because chemical motors are not typically capable of varying their specific impulse. The MTM becomes:

Mk =
∂X+

k

∂X−k
=



I3×3 03×3 03×1

03×3 I3×3 03×1 07×2

01×3 01×3 Mk33

07×2 I2×2


(27)

where,

Mk33 =
∂mk+1

∂mk
= e−∆vk/ve . (28)

III. A. 5. STM-MTM Chain

Once Φk and Mk have been calculated for each segment, propagation of derivative information from any point along

the trajectory onward to the match point is achieved through sequential multiplication of these matrices:

∂X†F
∂X+

k

= ΦN/2+1MN/2ΦN/2 · . . . ·Mk+1Φk+1 (29)

The only remaining step towards obtaining the actual derivatives of interest in Eq. (15) is to compute the derivative
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∂X+
k

∂xi
, that is the sensitivity of the spacecraft’s state immediately following the kth impulse to changes in the ith

element of the decision vector. One or more of these derivatives may be contained in the derivative connection

matrix Ξk. Details on the calculation of Ξk vary depending on the particular pi being considered and are provided in

subsequent sections for several decision vector entries. After computing the derivative connection matrix, the match

point Jacobian entries may be calculated as follows:

ΦN/2+1MN/2ΦN/2 · . . . ·Mk+1Φk+1Ξk (30)

III. B. Partials With Respect to Segment Control Variables

For both bounded impulse models, the majority of the problem decision variables are those defining the magnitude

and the direction of thrust applied over the course of each segment. The MTM submatrices corresponding to these

variables are computed differently for the two models.

III. B. 1. MGALT

For the low-thrust case, the actual decision variable is the “up-to-unit” throttle vector that scales the maximum allowed

∆v for the segment. For forward propagated half-phases, from Eq. (6):

∂v+
k

∂uk
= ∆vmaxkI3×3 (31)

and from Eq. (9):

∂mk+1

∂uk
= − uTk
‖uk‖

D ∆t ṁmaxk (32)

therefore,

Ξk =
∂X+

k

∂uk
=


03×3

∂v+
k

∂uk

∂mk+1

∂uk

 (33)

and hence,

∂X†F
∂uk

=


Φk+1Ξk k = N/2∏N/2−k
i=1

(
ΦN/2+2−iMN/2+1−i

)
Φk+1Ξk 1 ≤ k < N/2

(34)

If we now consider derivatives of the match point constraint with respect to control parameters in the backwards

propagated half-phase, the method changes slightly and we are now interested in calculating ∂X−k
∂uk

:
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∂v−k
∂uk

=
D∆t ṁmaxk

‖uk‖
∆vmaxkuku

T
k −∆vmaxkI3×3 (35)

and from Eq. (9):

∂mk+1

∂uk
=

uTk
‖uk‖

D ∆t ṁmaxk (36)

therefore,

Ξk =
∂X−k
∂uk

=


03×3

∂v−k
∂uk

∂mk+1

∂uk

 (37)

and hence,

∂X†B
∂uk

=


Φk+1Ξk k = N/2 + 1∏N
i=k (ΦiMi−1) Φk+1Ξk N/2 + 1 < k ≤ N

(38)

III. B. 2. MGAnDSMs

Computing match point control sensitivities for MGAnDSMs is done differently from the procedure for the MGALT

case in that the applied ∆v at each mid-course maneuver is directly encoded as a decision variable (in lieu of the

MGALT throttle parameter) and mass is propagated with the rocket equation. Therefore, for forward propagation:

∂mk+1

∂∆vk
= −mk

ve

∆vTk
∆vk

e−∆vk/ve (39)

therefore,

Ξk =
∂X+

k

∂∆vk
=


03×3

I3×3

∂mk+1

∂uk

 (40)

The calculations are similar for backwards propagation.

The match point derivative calculations for phase final mass and the components of v∞ are not discussed in this

paper for the sake of brevity, but their computation is analogous to the control sensitivity calculations for both MGALT

and MGAnDSMs.
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III. C. Partials with Respect to Segment Specific Impulse Variables

Match point sensitivities with respect to Isp (for MGALT) are considered for thruster models operating under two

paradigms. The first has the optimizer select the engine’s Isp for the entire duration of the mission, which could

include multiple phases. The second allows the optimizer to select the Isp for each trajectory segment, modeling a

VSI-capable thruster configuration. For both of these cases, it is assumed that the engine’s thrust is determined from

the following relationship:

Tmaxk =
2ηPk
Ispg0

(41)

and the mass flow rate is then computed with:

ṁmaxk =
Tmaxk

Ispg0
(42)

For the first case, the partial derivative computation is accounted for in each MTM by the sub-matrices M26 and

M36 from Eq. (18):

M26 = ±uk
D∆t

mk

(
∂Tmaxk

∂Isp
− Tmaxk

mk

∂mk

∂Isp

)
(43)

where

M36 =
∂mk

∂Isp
= ∓‖uk‖D∆t

∂ṁmaxk

∂Isp
(44)

For a VSI configuration where the optimizer is free to select the Isp for each phase segment, the match point

derivatives are computed in a similar fashion to the control derivatives. It is worth noting that regarding actual thruster

hardware, Isp is not a directly selectable quantity. Both specific impulse and thrust are varied by discretely altering

the input voltage and the mass flow rate to the thruster.The STM-MTM chains used in Eq. (34) and (38) are used to

compute the VSI derivatives, with only the Ξk vector changing for the case of segment Isp:

Ξk =
∂X+

k

∂Ispk
=


03×3

∂v+
k

∂uk

∂mk+1

∂uk

 (45)

III. D. Partials with Respect to the Current Phase Flight Time

III. D. 1. MGALT

The current phase flight time variable enters into the match point derivative computations via the STM in addition

to the MTM. The STM contains explicit time dependencies of the pre-impulse position and velocity because the
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Kepler propagation length of each segment is computed from the current phase flight time. The method for computing

these derivatives is due to Pitkin [54] and is also used by Lantoine and Russell for computing state sensitivities with

respect to time-of-flight variables across one Keplerian arc [55]. The plus and minus signs correspond to forward and

backward propagated half-phases respectively. Expressions for Ḟ , Ġ, F̈ and G̈ are provided in the Appendix (A).

∂r−k
∂∆tp

=
∂r−k
∂∆t

· ∂∆t

∂∆tp
= ±

[
Ḟr+

k−1 + Ġv+
k−1

] ∂∆t

∂∆tp
(46)

∂v−k
∂∆tp

=
∂v−k
∂∆t

· ∂∆t

∂∆tp
= ±

[
F̈r+

k−1 + G̈v+
k−1

] ∂∆t

∂∆tp
(47)

The derivative of segment propagation time with respect to ∆tp is calculated differently for the half-segments than it

is for full segments. In the MGALT model, half-segments occur at the phase left and right phase boundaries, and on

either side of the match point:

∂∆t

∂∆tp
=


1
N for full segments

1
2N for half-segments

(48)

The MTM also contains entries that facilitate the computation of partial derivatives with respect to ∆tp. Specifi-

cally, changes in ∆vmaxk and ∆mmaxk due to variations in ∆tp are encoded in each MTM. The submatrices Mk24 and

Mk34 are comprised of ∆tp derivative directions of Pk, ∆t and tk that do not involve the position of the spacecraft

at the point of the applied maneuver r−k . To see what is meant by this for Pk in particular, it is helpful to look at its

partial derivative with respect to ∆tp:

∂Pk
∂∆tp

=
∂Pk
∂rs/�k

·
∂rs/�k
∂r−k

·
∂r−k
∂∆tp

+
∂Pk
∂tk
· ∂tk
∂∆tp

(49)

The first term in Eq. (49) is accounted for by Equations (19), (22) and (46). The second term must be accounted for

by Mk24 and Mk34 .

The sub-matrix Mk24 is calculated as follows for forward propagation, where t is the current mission epoch

(measured from launch):

Mk24 = uk
D

mk

[
∆t

∂Tmaxk

∂Pk
· ∂Pk
∂tk
· ∂tk
∂∆tp

+
∂∆t

∂∆tp
Tmaxk

]
(50)

and with the added terms accounting for the dependence on ṁmaxkby ∆vmaxk for backwards propagation.
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Mk24 =− uk
D

mk

[
∆t

∂Tmaxk

∂Pk
· ∂Pk
∂tk
· ∂tk
∂∆tp

+
∂∆t

∂∆tp
Tmaxk

−‖uk‖
D∆t Tmaxk

mk

(
ṁk

N
+ ∆t

∂ṁmaxk

∂Pk
· ∂Pk
∂tk
· ∂tk
∂∆tp

)]
(51)

The derivative of the current epoch tk with respect to ∆tp is readily calculated once one considers how the current

epoch is computed for a forward propagated half-phase (where t0 is the epoch at the start of the phase):

tk = t0 + ∆t1 + ∆t2 + ∆t3 + . . .+ ∆tk

= t0 +
∆tp
2N

+
∆tp
N

+
∆tp
N

+ . . .+
∆tp
N

= t0 +
(k − 0.5)

N
∆tp (52)

thus,

∂tk
∂∆tp

=

(
k − 0.5

N

)
(53)

For a backwards propagated half-phase, the calculation is similar and the derivative is:

∂tk
∂∆tp

=

(
0.5− k
N

)
(54)

The final sub-matrix in the augmented MTM is computed as follows, again with the negative sign corresponding with

forward propagation, the positive sign with backward:

Mk34 = ∓‖uk‖D
(
ṁmaxk

N
+ ∆t

∂ṁmaxk

∂Pk
· ∂Pk
∂tk
· ∂tk
∂∆tp

)
(55)

Then, to actually compute the match point ∆tp gradients, the following matrix multiplications must be carried out

with the STM and MTM augmented with ∆tp derivative information:

∂X†F
∂∆tp

= ΦN/2+1MN/2ΦN/2 · . . . ·Φ2M1Θ1 (56)

where
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Θ1 =



∂r−1
∂∆tp

∂v−1
∂∆tp

0

1


(57)

and

∂X†B
∂∆tp

= ΦN/2+2MN/2+1ΦN/2+3 · . . . ·ΦN+1MNΘN (58)

where

ΘN =


φB

0

1

 (59)

In Eq. (59), φ accounts for the fact that the state at the right hand boundary of a phase has non-zero ∆tp gradients:

φB =

R̃N+2 RN+2

ṼN+2 VN+2

 ∂Xf

∂∆tp
+

 ∂r+N
∂∆tp

∂v+
N

∂∆tp

 (60)

III. D. 2. MGAnDSMs

Computing current phase flight time derivatives for the high thrust transcription requires that Eq. (48) be replaced by:

∂∆tk
∂∆tp

= αk (61)

This is because, for MGAnDSMs, the inter-maneuver Keplerian propagation times ∆tk are not uniform as they are

for MGALT, rather each is constructed out of two decision variables the αk and ∆tp:

III. E. Partials with Respect to Previous Phase Flight Times and Launch Epoch

Flight time variables from previous phases as well as the launch epoch variable affect the state at the left and right

boundaries of the current phase. This means that Eq. (57) must be modified:

Θ1 =


φF

0

1

 (62)
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φF =

R̃1 R1

Ṽ1 V1

 ∂X0

∂∆tp
+

 ∂r−1
∂∆tp

∂v−1
∂∆tp

 (63)

Previous phase flight times do not impact the Keplerian propagation time between maneuvers in the current phase.

For this reason, the STM does not contain explicit partial derivatives of the state with respect to previous times-of-flight

variables.

III. F. Partials with Respect to the MGAnDSMs Inter-Maneuver Times

The match point derivatives with respect to the MGAnDSMs inter-maneuver time variables are computed similarly to

the phase flight time variables, except that each one influences a different amount of the half-phase.

∂X†F
∂∆tk

= MN/2ΦN/2 · . . . ·Φk+1MkΘk (64)

where

Θk =



∂r−k
∂∆tk

∂v−k
∂∆tk

0

1


(65)

∂X†B
∂∆tk

= ΦN/2+1MN/2+1ΦN/2+2 · . . . ·ΦkMkΘk (66)

where

Θk =



∂r+k
∂∆tk

∂v+
k

∂∆tk

0

1


(67)

IV. Distance Constraint Derivative Computation

This section will discuss an operational constraint that imposes a minimum and/or maximum value on the distance

between the spacecraft and bodies in the solar system, i.e.,

dLB ≤ rs/c-body ≤ dUB (68)
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where dLB and dUB are defined by the analyst for each problem and for each body. For example, the spacecraft may be

constrained to never get too close to the sun for thermal reasons, or may not be allowed to fly farther away from the

earth than some maximum distance for communications reasons. These constraints occur often in real-world mission

design, especially in low-thrust design where the desire to prevent the spacecraft from growing too hot is in conflict

with the availability of more power and therefore more efficient propulsion closer to the sun.

The distance constraint is straightforward to pose in the optimization problem because it requires only looking up

the position of the relevant solar system bodies at each time-step in the trajectory. However it is quite computationally

expensive for two reasons. The first reason is that each ephemeris lookup requires an ephemeris database call, which

is quite slow. The second reason is that computing analytical derivatives of the distance constraint requires recursive

multiplications of the STMs and MTMs along the trajectory, similar to the STM-MTM chains used to compute the

match point derivatives (e.g. Eq. (34)). In a large problem with many segments, over 50% of the execution time for

the trajectory optimization is consumed by the derivative calculation code for the distance constraint.

In particular, the distance constraint and its derivatives must be computed at each maneuver point in the phase.

The STM-MTM chains that must be computed in order to facilitate this are as follows:

∂X−j

∂X+
k

=


Φk+1 j = k + 1∏j−k
i=1 (Φj+2−iMj+1−i) Φk+1 2 ≤ k < j ≤ N/2

(69)

for forward half-phases, and

∂X+
j

∂X−k
=


Φk+1 j = k − 1∏k
i=j+2 (ΦiMi−1) Φk+1 N/2 + 2 ≤ j < k ≤ N

(70)

for backward half-phases.

It should be noted that since the distance constraint is only enforced at maneuver locations along the phase, it is

really only useful in conjunction with the MGALT model, which features a large number of impulses. In order to

impose a similar constraint for the MGAnDSMs transcription, additional “non-maneuver” nodes can be introduced at

regular intervals along the phase that are used exclusively to enforce the distance constraint.

V. Accuracy

The analytic techniques described in this work are not the only methods available for computing the constraint

partials of a nonlinear program. Finite differencing methods are probably the simplest to implement, although this is

typically accompanied by a decrease in program execution speed and worse a decrease in the accuracy of the partials.

Other techniques such as complex step differentiation and algorithmic differentiation (AD) can produce near-machine

precision derivative information, and are general techniques that do not require any a priori information about the
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problem being solved. Both of these techniques typically require a longer runtime than specialized analytic formulae,

if they are used to compute derivatives during a typical cost function evaluation. If they are used to compute only

individual STMs and MTMs, which are then incorporated into derivative computations such as Eq. (29), then one

would expect the runtimes to decrease. The interested reader is directed to a detailed study by Pellegrini and Russell,

that examines finite differencing techniques of varying order, the complex step method as well as analytic methods

as applied to STM computation for integrated trajectories [56]. This section will examine the accuracy of the partial

derivative calculation methods described in this paper compared with the same derivatives obtained using central

differencing as well as ones calculated using the AD library developed by Ghosh [38]. This AD software package uses

C++ operator overloading in a tapeless forward-mode configuration.

An example 20 segment Earth to Mars MGALT trajectory phase was evaluated, and the Jacobian was computed

using central differencing, the formulae presented in this paper as well as AD. The partial derivatives calculated

with AD are assumed to be truth. An example column from the Jacobian is shown in Tables 4 and 5 for the finite

differencing and analytic cases respectively. This column contains the partial derivatives the match-point continuity

constraint c† with respect to the x component of the control vector from the first segment in the phase ux1
(i.e. the

segment furthest from the match-point in the forward half-phase). The error of the partial derivative values relative to

the values computed using AD is shown for both methods.

Table 4. Example match-point derivatives computed using central differencing compared with algorithmic differentiation. A central
differencing step size of 1.0e-7 was used.

Derivative Value computed with FD Error Relative to AD value
∂x†
∂ux1

-2020560.390983700 0.002538938555645e-5
∂y†
∂ux1

-166778.4769555778 0.136749253496038e-5
∂z†
∂ux1

-81633.22222039030 0.084320438683687e-5
∂ẋ†
∂ux1

-0.1006144971940313 0.016670205267864e-5
∂ẏ†
∂ux1

0.07758976470341465 0.029646679151652e-5
∂ż†
∂ux1

0.03673856948309212 0.050559366283141e-5
∂m†
∂ux1

2.346964682917494 0.027179713285220e-5

Table 5. Example match-point derivatives computed analytically compared with algorithmic differentiation.

Derivative Value computed analytically Error relative to AD value

∂x†
∂ux1

-2020560.339682915 0.0e-14

∂y†
∂ux1

-166778.7050242114 0.296659647101017e-14

∂z†
∂ux1

-81633.29105393921 0.267389352563618e-14

∂ẋ†
∂ux1

-0.1006144804213910 0.082758193947980e-14

∂ẏ†
∂ux1

0.07758974170063281 0.035772223244046e-14

∂ż†
∂ux1

0.03673855090831362 0.037774456163087e-14

∂m†
∂ux1

2.346964045019395 0.018921858253112e-14

As one would expect, the Jacobian values obtained with central differencing differ from the AD values with a relative

error on the order of 1.0e-6 to 1.0e-8. With the analytic methods presented in this paper precision at, or very close to,
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machine precision is achieved.

VI. Conclusion

This paper describes analytic methods for computing Jacobian matrix entries for two bounded-impulse trajectory

models. The derivative calculations for the continuous-thrust model make accommodations for the accurate modeling

of a propulsion unit powered using a solar electric system. These results are are general in the sense that they allow for

the use of any solar electric power model constructed using smooth functions, and are also applicable for power sources

such as radioisotope thermal electric generators. In addition, these techniques can also handle realistic operational

constraints such as maintaining proximity bounds with respect to other bodies. The computations discussed in this

work were verified for correctness using an algorithmic differentiation library.

Appendix

A. Two-Body Propagation

The transcriptions described in this paper utilize Keplerian two-body propagation using the Lagrange coefficients [48],

rk+1

vk+1

 =

F G

Ḟ Ġ


rk

vk

 . (71)

It should be noted that this could be replaced with numerical integration in the case of MGAnDSMs for the purpose

of including additional dynamics thereby increasing the fidelity of the solution. For the case of MGALT, if the two-

body propagation is replaced with numerical integration, the impulsive approximation should be discarded in favor of

including the thrust term directly into the differential equations of motion [47].

It is generally beneficial to use a two-body propagation method capable of robustly propagating any orbit initial

condition (i.e. elliptical, parabolic or hyperbolic) initialized by a search method. For this reason, a propagation method

based on universal orbit variables is employed. Here we extend the propagator described by Der [57] to any conic orbit.

The universal variables are defined according to the energy regime of the orbit. For elliptic trajectories:

α =
1

a
=

2

rk
− v2

k

µ
> 0 (72)

then defining

y = αχ2 (73)

C =
1

y
(1− cos(

√
y)) (74)
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S =
1

y3
(
√
y − sin(

√
y)) (75)

the universal variables become:



U1 = χ(1− yS)

U2 = χ2C

U3 = χ3S

U0 = 1− αU2

(76)

For a hyperbolic trajectory, α < 0 and then



U0 = cosh(
√
−αχ)

U1 = 1√
−αχ sinh(

√
−αχ)

U2 = 1
α (1− U0)

U3 = 1
α (χ− U1)

(77)

Parabolic trajectories are unlikely to be initialized by a search method. However, they can occur when an optimizer

transitions a hyperbolic trajectory to an elliptic one, or vice versa. In this case, α = 0 and



U0 = 1

U1 = χ

U2 = 1
2U1χ

U3 = 1
3U2χ

(78)

Since it will never be the case that α will be exactly equal to zero (to machine precision), we find that a tolerance of

|α| < 1× 10−12 works well.

The Lagrange coefficients and their time derivatives are given by:
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F = 1− U2

rk
(79)

Ḟ = −
√
µ

rk+1rk
U1 (80)

F̈ = −
√
µ

rk

(
U̇1

rk+1
− U1

ṙk+1

r2
k+1

)
(81)

G =
1
√
µ

(rkU1 + σkU2) (82)

Ġ = 1− U2

rk+1
(83)

G̈ = −

(
U̇2

rk+1
− U2

ṙk+1

r2
k+1

)
(84)

where,

rk+1 = rkU0 + σkU1 + U2 (85)

ṙk+1 = rkU̇0 + σkU̇1 + U̇2 (86)

σk+1 = σkU0 + (1− αrk)U1 (87)

σk =
rk · vk√

µ
(88)

∂U0

∂χ
= −αU1;

∂Un
∂χ

= Un−1 n = 1, 2, ... (89)

∂χ

∂t
=

√
µ

r
(90)

Kepler’s equation in terms of the universal variable may be written as follows:

f = rkU1 + σkU2 + U3 −
√
µ∆t (91)

where,

∂f

∂χ
= rk (92)
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∂2f

∂χ2
= σk (93)

Solution of Eq. (91) for the root χ is achieved by iteration using the Laguerre-Conway method [58], using the following

update scheme:

χi+1 = χi − δχ; χ0 =


α
√
µ∆t, if α > 0

√
µ

10rk
∆t, otherwise

(94)

where,

δχ


Nf

∂f
∂χ±
√
η
, if η > 0

f
∂f
∂χ

, otherwise
(95)

and,

η =

∣∣∣∣∣(N − 1)2

(
∂f

∂χ

)2

−N(N − 1)f
∂2f

∂χ2

∣∣∣∣∣ (96)

Laguerre’s root finding method, when applied to a general smooth function f , indicates that the sign in the denominator

of Eq. (95) is positive if f
′

(Eq. (92) in this case) is non-negative and negative otherwise. Since Eq. (92) can never be

negative for the particular case of Eq. (91), the sign will always be positive. The order N is typically set to 5, but can

be increased if numerical instabilities are encountered.

B. Fundamental Perturbation STM

Vector expressions for the 3x3 perturbation STM quadrants:
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R̃ =
rk+1

µ
(vk+1 − vk)(vk+1 − vk)T

+
1

r3
k

[
rk(1− F )rk+1r

T
k + Cvk+1r

T
k

]
+ F I3×3 (97)

R =
rk
µ

(1− F )
[
(rk+1 − rk)vTk − (vk+1 − vk)rTk

]
+
C

µ
vk+1v

T
k +GI3×3 (98)

Ṽ =− 1

r2
k

(vk+1 − vk)rTk −
1

r2
k+1

rk+1(vk+1 − vk)T

+ Ft

[
I3×3 −

1

r2
k+1

rk+1r
T
k+1

+
1

µrk+1
(rk+1v

T
k+1 − vk+1r

T
k+1)rk+1(vk+1 − vk)T

]
− µC

r3
k+1r

3
k

rk+1r
T
k (99)

V =
rk
µ

(vk+1 − vk)(vk+1 − vk)T

+
1

r3
k+1

[
rk(1− F )rk+1r

T
k − Crk+1v

T
k

]
+GtI3×3 (100)

In Equations (97) - (100), I is the 3x3 identity matrix. The quantity C is calculated using the universal functions:

√
µC = 3U5 − χU4 −

√
µ(t− t0)U2 (101)

The functions Un have traditionally been calculated with continued fraction expansions [48, 49], however, the follow-

ing recursion relation can be used to compute higher-order universal functions:

Un(χ, α) + αUn+2(χ, α) =
χn

n!
n = 0, 1, 2, 3, ... (102)

C. Patched-Conics Flyby Model Derivatives

Derivatives of the patched-conics flyby model constraints used by the MGALT and MGAnDSMs transcriptions are

provided in Eq. (103)-(108)
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∂cflyby-altitude

∂v−∞x

= −
µ cos

(
acos(α)

2

)(
v+
∞x
v−∞y

2 − v−∞x
v+
∞y
v−∞y

+ v+
∞x
v−∞z

2 − v−∞x
v+
∞z
v−∞z

)
rflyby(α− 1)

[
1− (v−∞xv

+
∞x+v−∞yv

+
∞y+v−∞zv

+
∞z )2

γβ

]1/2

γ3/2β3/2

(103)

∂cflyby-altitude

∂v−∞y

= −
µ cos

(
acos(α)

2

)(
v+
∞y
v−∞x

2 − v−∞y
v+
∞x
v−∞x

+ v+
∞y
v−∞z

2 − v−∞y
v+
∞z
v−∞z

)
rflyby(α− 1)

[
1− (v−∞xv

+
∞x+v−∞yv

+
∞y+v−∞zv

+
∞z )2

γβ

]1/2

γ3/2β3/2

(104)

∂cflyby-altitude

∂v−∞z

= −
µ cos

(
acos(α)

2

)(
v+
∞z
v−∞x

2 − v−∞z
v+
∞x
v−∞x

+ v+
∞z
v−∞y

2 − v−∞z
v+
∞y
v−∞y

)
rflyby(α− 1)

[
1− (v−∞xv

+
∞x+v−∞yv

+
∞y+v−∞zv

+
∞z )2

γβ

]1/2

γ3/2β3/2

(105)

where

α =
v−∞x

v+
∞x

+ v−∞y
v+
∞y

+ v−∞z
v+
∞z

β1/2γ1/2

β = v+
∞x

2
+ v+
∞y

2
+ v+
∞z

2

γ = v−∞x

2
+ v−∞y

2
+ v−∞z

2

∂cflyby-altitude

∂v+
∞x

=
2v+
∞x

µ

rflybyξ2
−

2v+
∞x

µ

rflyby sin
(

acos(ε)
2

)
ξ2
−
µ cos

(
acos(ε)

2

)(
v−∞x

v+
∞y

2 − v−∞y
v+
∞x
v+
∞y

+ v−∞x
v+
∞z

2 − v−∞z
v+
∞x
v+
∞z

)
rflyby(ε− 1)

[
1− φ2

ψξ

]1/2
ψ1/2ξ5/2

(106)

∂cflyby-altitude

∂v+
∞y

=
2v+
∞y

µ

rflybyξ2
−

2v+
∞y

µ

rflyby sin
(

acos(ε)
2

)
ξ2
−
µ cos

(
acos(ε)

2

)(
v−∞y

v+
∞x

2 − v−∞x
v+
∞y
v+
∞x

+ v−∞y
v+
∞z

2 − v−∞z
v+
∞y
v+
∞z

)
rflyby(ε− 1)

[
1− φ2

ψξ

]1/2
ψ1/2ξ5/2

(107)

∂cflyby-altitude

∂v+
∞z

=
2v+
∞z

µ

rflybyξ2
−

2v+
∞z

µ

rflyby sin
(

acos(ε)
2

)
ξ2
−
µ cos

(
acos(ε)

2

)(
v−∞z

v+
∞x

2 − v−∞x
v+
∞z
v+
∞x

+ v−∞z
v+
∞y

2 − v−∞y
v+
∞z
v+
∞y

)
rflyby(ε− 1)

[
1− φ2

ψξ

]1/2
ψ1/2ξ5/2

(108)

where
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ε =
φ

ψ1/2ξ1/2

ξ = v+
∞x

2
+ v+
∞y

2
+ v+
∞z

2

φ = v−∞x
v+
∞x

+ v−∞y
v+
∞y

+ v−∞z
v+
∞z

ψ = v−∞x

2
+ v−∞y

2
+ v−∞z

2
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[6] Vinkó, T. and Izzo, D., “Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design,”

Tech. Rep. GOHTPPSTD, European Space Agency, the Advanced Concepts Team, 2008. Available on line at www.esa.int/act.

30 of 34

American Institute of Aeronautics and Astronautics



[7] Englander, J., Conway, B., and Williams, T., “Automated Mission Planning via Evolutionary Algorithms,” Journal of Guid-

ance, Control, and Dynamics, Vol. 35, No. 6, 2012, pp. 1878–1887,

doi:10.2514/1.54101.

[8] Sims, J. A. and Flanagan, S. N., “Preliminary Design of Low-Thrust Interplanetary Missions,” in “AAS/AIAA Astrodynamics

Specialist Conference, AAS Paper 99-338,” Girdwood, Alaska, 1999.

[9] McConaghy, T. T., GALLOP Version 4.5 User’s Guide, School of Aeronautics and Astronautics, Purdue University, 2005.

[10] Sims, J., Finlayson, P., Rinderle, E., Vavrina, M., and Kowalkowski, T., “Implementation of a Low-Thrust Trajectory Opti-

mization Algorithm for Preliminary Design,” in “AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2006-6746,”

, 2006.

[11] Yam, C., di Lorenzo, D., and Izzo, D., “Constrained Global Optimization of Low-Thrust Interplanetary Trajectories,” in “IEEE

Congress on Evolutionary Computation (CEC),” Piscataway, NJ, 2010, pp. 1–7.

[12] Yam, C., di Lorenzo, D., and Izzo, D., “Low-Thrust Trajectory Design as a Constrained Global Optimization Problem,” in

“Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,” Vol. 225, 2011, pp.

1243–1251.

[13] Breakwell, J. V., “The Optimization of Trajectories,” Journal of the Society of Industrial and Applied Mathematics (SIAM),

Vol. 7, No. 2, 1959, pp. 215–247,

doi:10.1137/0107018.

[14] Lawden, D. F., Optimal Trajectories for Space Navigation, Butterworths Mathematical Texts, Butterworths, London, 1963.

[15] Lion, P. M. and Handelsman, M., “Primer Vector on Fixed-Time Impulsive Trajectories,” AIAA Journal, Vol. 5, No. 1, 1968,

pp. 127–132,

doi:10.2514/3.4452.

[16] Merec, J.-P., Optimal Space Trajectories, Studies in Astronautics, Elsevier Scientific Publishing Company, 1979.

[17] Melbourne, W. G. and Sauer, J., C. G., “Optimum Interplanetary Rendezvous Trajectories with Power Limited Vehicles,”

AIAA Journal, Vol. 1, 1963, pp. 54–60,

doi:10.2514/3.1468.

[18] Sauer, J., C. G., “Optimization of Multiple Target Electric Propulsion Trajectories,” in “AIAA Paper 73-205,” , 1975,

doi:10.2514/6.1973-205.

[19] Jezewski, D. J., “Primer Vector Theory and Applications,” Tech. Rep. TR-R454, NASA, 1975.

[20] Bryson, A. and Ho, Y., Applied Optimal Control, Taylor and Francis, 1975.

[21] Hull, D. G., Optimal Control Theory for Applications, Springer, New York, 2003.

[22] Enright, P. J. and Conway, B. A., “Optimal Finite-Thrust Spacecraft Trajectories Using Collocation and Nonlinear Program-

ming,” Journal of Guidance, Control, and Dynamics, Vol. 14, No. 5, 1991, pp. 981 – 985,

doi:10.2514/3.20739.

31 of 34

American Institute of Aeronautics and Astronautics



[23] Enright, P. and Conway, B., “Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear

Programming,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 994–1002,

doi:10.2514/3.20934.

[24] Herman, A. and Conway, B., “Optimal Spacecraft Attitude Control Using Collocation and Nonlinear Programming,” Journal

of Guidance, Control, and Dynamics, Vol. 15, No. 5, 1992, pp. 1287 – 1289,

doi:10.2514/3.20983.

[25] Herman, A. L. and Conway, B. A., “Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature

Rules,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 3, 1996, pp. 592 – 599,

doi:10.2514/3.21662.

[26] Herman, A. L. and Conway, B. A., “Optimal, Low-Thrust, Earth-Moon Orbit Transfer,” Journal of Guidance, Control, and

Dynamics, Vol. 21, No. 1, 1998, pp. 141 – 147,

doi:10.2514/2.4210.

[27] Tang, S. and Conway, B. A., “Optimization of Low-Thrust Interplanetary Trajectories Using Collocation and Nonlinear

Programming,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3, 1995, pp. 599 – 604,

doi:10.2514/3.21429.

[28] Whiffen, G. J., “Static/Dynamic Control for Optimizing a Useful Objective,” United States Patent No. 6 496 741, 2002. Filed

March 25, 1999.

[29] Whiffen, G. J., “Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust

Trajectory Design,” in “AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2006-6741,” Keystone,

Colorado, 2006,

doi:10.2514/6.2006-6741.

[30] Lantoine, G. and Russell, R. P., “A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control

Problems. Part 1: Theory,” Journal of Optimization Theory and Applications, Vol. 154, No. 2, 2012, pp. 382–417,

doi:10.1007/s10957-012-0039-0.

[31] Lantoine, G. and Russell, R. P., “A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control

Problems. Part 2: Application,” Journal of Optimization Theory and Applications, Vol. 154, No. 2, 2012, pp. 418–442,

doi:10.1007/s10957-012-0038-1.

[32] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM

Rev., Vol. 47, No. 1, 2005, pp. 99–131,

doi:10.1137/S0036144504446096.
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